The V-ATPase-inhibitor archazolid abrogates tumor metastasis via inhibition of endocytic activation of the Rho-GTPase Rac1.
نویسندگان
چکیده
The abundance of the multimeric vacuolar ATP-dependent proton pump, V-ATPase, on the plasma membrane of tumor cells correlates with the invasiveness of the tumor cell, suggesting the involvement of V-ATPase in tumor metastasis. V-ATPase is hypothesized to create a proton efflux leading to an acidic pericellular microenvironment that promotes the activity of proinvasive proteases. An alternative, not yet explored possibility is that V-ATPase regulates the signaling machinery responsible for tumor cell migration. Here, we show that pharmacologic or genetic reduction of V-ATPase activity significantly reduces migration of invasive tumor cells in vitro. Importantly, the V-ATPase inhibitor archazolid abrogates tumor dissemination in a syngeneic mouse 4T1 breast tumor metastasis model. Pretreatment of cancer cells with archazolid impairs directional motility by preventing spatially restricted, leading edge localization of epidermal growth factor receptor (EGFR) as well as of phosphorylated Akt. Archazolid treatment or silencing of V-ATPase inhibited Rac1 activation, as well as Rac1-dependent dorsal and peripheral ruffles by inhibiting Rab5-mediated endocytotic/exocytotic trafficking of Rac1. The results indicate that archazolid effectively decreases metastatic dissemination of breast tumors by impairing the trafficking and spatially restricted activation of EGFR and Rho-GTPase Rac1, which are pivotal for directed movement of cells. Thus, our data reveals a novel mechanism underlying the role of V-ATPase in tumor dissemination.
منابع مشابه
Inhibition of the V-ATPase by Archazolid A: A New Strategy to Inhibit EMT.
Epithelial-mesenchymal transition (EMT) induces tumor-initiating cells (TIC), which account for tumor recurrence, metastasis, and therapeutic resistance. Strategies to interfere with EMT are rare but urgently needed to improve cancer therapy. By using the myxobacterial natural compound Archazolid A as a tool, we elucidate the V-ATPase, a multimeric proton pump that regulates lysosomal acidifica...
متن کاملRho GDP dissociation inhibitor 2 suppresses metastasis via unconventional regulation of RhoGTPases.
Rho GDP dissociation inhibitor 2 (RhoGDI2) has been identified as a metastasis suppressor in bladder and possibly other cancers. This protein is a member of a family of proteins that maintain Rho GTPases in the cytoplasm and inhibit their activation and function. To understand the mechanism of metastasis suppression, we compared effects of RhoGDI1 and RhoGDI2. Despite showing much stronger inhi...
متن کاملAnti-leukemic effects of the V-ATPase inhibitor Archazolid A
Prognosis for patients suffering from T-ALL is still very poor and new strategies for T-ALL treatment are urgently needed. Our study shows potent anti-leukemic effects of the myxobacterial V-ATPase inhibitor Archazolid A. Archazolid A reduced growth and potently induced death of leukemic cell lines and human leukemic samples. By inhibiting lysosomal acidification, Archazolid A blocked activatio...
متن کاملV-ATPase inhibition regulates anoikis resistance and metastasis of cancer cells.
Fighting metastasis is a major challenge in cancer therapy and novel therapeutic targets and drugs are highly appreciated. Resistance of invasive cells to anoikis, a particular type of apoptosis induced by loss of cell-matrix contact, is a major prerequisite for their metastatic spread. Inducing anoikis in metastatic cancer cells is therefore a promising therapeutic approach. The vacuolar-ATPas...
متن کاملPhosphorylation of ezrin by cyclin-dependent kinase 5 induces the release of Rho GDP dissociation inhibitor to inhibit Rac1 activity in senescent cells.
Normal somatic cells enter a state of irreversible proliferation arrest-designated cellular senescence, which is characterized by biochemical changes and a distinctive morphology. Cellular stresses, including oncogene activation, can lead to senescence. Consistent with an antioncogenic role in this process, the tumor suppressor pRb plays a critical role in senescence. Reexpression of pRb in hum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 72 22 شماره
صفحات -
تاریخ انتشار 2012